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Most existing methods for text classification focus on extracting a highly discriminative text representa-
tion, which, however, is typically computationally inefficient. To alleviate this issue, label embedding
frameworks are proposed to adopt the label-to-text attention that directly uses label information to con-
struct the text representation for more efficient text classification. Although these label embedding meth-
ods have achieved promising results, there is still much space for exploring how to use the label
information more effectively. In this paper, we seek to exploit the label information by further construct-
ing the text-attended label representation with text-to-label attention. To this end, we propose a Co-
attention Network with Label Embedding (CNLE) that jointly encodes the text and labels into their mutu-
ally attended representations. In this way, the model is able to attend to the relevant parts of both.
Experiments show that our approach achieves competitive results compared with previous state-of-
the-art methods on 7 multi-class classification benchmarks and 2 multi-label classification benchmarks.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Text classification is one of the fundamental tasks in Natural
Language Processing (NLP), which has been widely applied in sen-
timent analysis [1], question answering [2], and so on. Given an
input text, the goal of text classification is to assign it with one
or multiple labels from the predefined label set.

Existing methods for text classification mainly focus on encod-
ing the input text and conducting classification with the encoded
text representation. Traditionally, Brown et al. [3] and Wallach
[4] apply feature engineering techniques and use hand-crafted fea-
tures to represent the text. In recent years, deep neural networks
have been applied to encode the text, including Convolutional Neu-
ral Networks (CNNs) [5,6] and Recurrent Neural Networks (RNNs)
[7,8]. By employing deep models, previous methods are able to
extract a more discriminative text representation to improve the
performance of text classification. However, these deep models
typically consume a large number of computational resources.

To alleviate this issue, Wang et al. [9] and Du et al. [10] adopt
label embedding frameworks for more efficient text classification.
They notice that the impact of label information on learning the
text representation is indirect [9]. Hence, they propose to embed
all the labels in the predefined label set into the same space as
the word embedding and then adopt label-to-text attention to pro-
duce a label-attended text representation. By incorporating the
label information in a more direct way, these label embedding
approaches achieve promising results with fewer parameters and
less computation. Thus, a natural question to ask is how to use
the information from labels more effectively.

When exploiting the labels, we argue that it is helpful to lever-
age the information from the text. Intuitively, in a fine-grained sen-
timent classification task with five classes, humans can first easily
exclude some obviously wrong answers (e.g., very negative and
negative) by briefly glancing at the text. Then, they can pay more
attention to the remaining categories (e.g., neutral, positive, and
very positive). Motivated by this, we further incorporate the text-
to-label attention into text classification. In this way, we can focus
on finding the label(s) that more closely match(es) the text during
encoding the label embedding.

In this paper, we propose a text-label co-attention mechanism
to obtain the text-attended label representation and the label-
attended text representation. Inspired by the co-attention adopted
in question answering [11–13], we introduce a Co-attention Net-
work with Label Embedding (CNLE), where we jointly encode the
text and label into their mutually attended representations for
more effective text classification. Our model consists of two mod-
ules, namely the Text-Label Co-attentive Encoder (TLCE) and the
Adaptive Label Decoder (ALD). In particular, the TLCE produces
the mutually attended representations to focus on the relevant
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parts of both, while the ALD leverages these representations to
generate the prediction. Our method is more compatible with
multi-label classification compared with other approaches. First,
multi-label classification typically has more classes. We use
multi-head co-attention in TLCE to let the model focus more on
the labels that are more likely to be correct. Second, the labels in
multi-label classification are often correlated. Previous work [14]
shows that capturing the correlation among labels is critical for
multi-label classification. Thus, we adopt a generative approach
for ALD to capture the correlation among the labels, which not only
models the correlation among labels but also serves as a unified
framework for both multi-class classification and multi-label clas-
sification. The extensive experiments on several benchmark data-
sets demonstrate the effectiveness of the proposed method.

Themain contributions of this paper are summarized as follows.

� For more effective text classification, we propose a text-label
co-attention mechanism to obtain both the label-attended text
representation and text-attended label representation. This
allows the model to focus on the relevant parts of both the text
and labels to benefit text classification.

� We devise a Co-attention Network with Label Embedding
(CNLE) consisting of a Text-Label Co-attentive Encoder (TLCE)
and an Adaptive Label Decoder (ALD). The TLCE aims to obtain
the mutually attended representations of text and labels, and
the ALD leverages these representations to tackle both the
multi-class and the multi-label classification without modifying
the model.

� We evaluate our method on 7 benchmarks of multi-class classi-
fication and 2 benchmarks of multi-label classification. The
experiments show that our method achieves competitive
results compared with previous state-of-the-art methods.

2. Related work

Text Classification. Traditional methods for text classification
[15–17] use feature engineering techniques such as N-grams [3]
and bag-of-words (BoW) [4] as the feature extractor, and then
apply Support Vector Machine (SVM) [17] as the classifier. In
recent years, models that are based on neural networks [18–26],
such as Convolutional Neural Networks (CNNs) [27–29,5,6] and
Recurrent Neural Networks (RNNs) [30,7,8,31], have been widely
applied in text classification to extract more informative features
from the text. Moreover, Yang et al. [14] propose a Sequence Gen-
eration Model (SGM) to apply a sequence-to-sequence generative
approach for the multi-label classification. During the decoding
stage, SGM is able to capture the correlations among the labels
since it produces the next label given the labels predicted at previ-
ous steps. In this work, we also adopt the encoder-decoder archi-
tecture to generate the target label(s). In this way, our model is
able to cope with both the multi-class classification and multi-
label classification without modifying the model. Compared with
traditional approaches (e.g., SVM), large pre-trained models such
as BERT [21] and XLNet [22] recently achieved substantial
improvement in terms of performance thanks to their powerful
encoding ability. However, these methods typically rely on a highly
discriminative text representation that may require abundant
computation resources to obtain. In this work, in addition to
exploiting the text representation, we also seek to leverage the
label information for more effective and efficient text classification.

Label Embedding. Label embedding for text classification has
been studied in multitask learning [32] to tackle the potential loss
of label information. Wang et al. [9] and Du et al. [10] propose to
view text classification as a word-label matching problem. Wang
et al. [9] notice that the use of label information only occurs in
learning the classifier on top of the model and its impact on learn-
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ing the text representation is indirect. To address this issue, they
directly incorporate label information from the bottom of the
model by introducing the label embedding with a label-to-text
attention mechanism. These methods show that the label embed-
ding is informative for the downstream classification task. With a
simpler architecture with fewer parameters, they still yield very
promising results. In this work, we further incorporate the text-
to-label attention and produce the text-label co-attended repre-
sentation for text classification. Compared with the previous label
embedding methods, our method leverages the feedback from the
text representation to encode more information into the labels.

Co-attention Mechanism. Co-attention [33–35] is widely applied
in the multi-modal learning between images and language (e.g.,
visual question answering). Lu et al. [33] propose a co-attention
model that jointly reasons about the image and question informa-
tion. Recently, Lu et al. [35] incorporate a co-attention transformer
architecture to learn the joint representations of the image content
and natural language. Moreover, the co-attention has also been
applied in question answering [11–13]. Seo et al. [11] adopt
context-to-query attention and query-to-context attention to
reduce the information loss. Xiong et al. [12] adopt the co-
attention to attend to important parts in the document and the
question. Co-attention [36,33,12,13,37,35] in the previous methods
typically fuse the information from two separated sources (e.g.,
image-language or question-text) to produce the attended source
representations for each source respectively. Different from the
classic co-attention mechanism, we modify the popular self-
attention [38] into a co-attention between the source and target
(i.e., the text sequence and label sequence) to jointly produce the
mutually attended representations for both the text and labels. In
this way, our model is able to focus on the relevant parts of both
to benefit text classification.
3. Co-attention network with label embedding

We propose a Co-attention Network with Label Embedding
(CNLE) to jointly encode the input text sequence and the label
sequence, and then use their co-attended representations to gener-
ate the target label(s) for text classification. The overall scheme of
CNLE is shown in Fig. 1.

Notations. Throughout the paper, we use the following nota-
tions. We denote the text sequence as x ¼ ½x1; . . . ; xm� and the label
set as C ¼ fl1; . . . ; lcg, where m denotes the number of words in x
and c denotes the number of classes (e.g., for binary classification,
c ¼ 2). In this work, we consider text classification as a generation
problem, where we generate one label at each decoding timestep.
Specifically, given the text x, we aim to produce the probabilities ŷt

for all classes to predict the target label at t-th decoding step. For
the multi-class classification, only a single step of decoding is
required, while the multi-label classification requires multiple
decoding steps. The notations used in the paper are summarized
in Table 1.
3.1. General scheme

In this paper, we focus on incorporating text-to-label attention
based on previous label embedding methods [9,10] to further
exploit the information from labels. To this end, we propose a
text-label co-attentive architecture to obtain the text-attended
label representation and label-attended text representation during
the encoding process and then leverage both representations to
generate a target label sequence. The intuition behind our pro-
posed co-attention mechanism is that the information of text and
labels can be mutually fused with each other. In this way, the



Fig. 1. The overall architecture of the Co-attention Network with Label Embedding (CNLE). The illustration shows the encoding process and one timestep of the decoding
process on the multi-label classification task. The Text-Label Co-attentive Encoder (TLCE) takes a text sequence and a label sequence as inputs to produce their mutually
attended representations. Then, the Adaptive Label Decoder (ALD) uses both the text and label representation to compute the probability for each class in the current
timestep. Best viewed in color.

Table 1
Summary of the notations used in this paper.

Module Symbol Description Shape

General m The number of words in the text Scalar
c The number of classes Scalar
d Hidden dimension (other than transformer layer) Scalar
C Label set c
x Text sequence m� demb

l Label sequence c � demb

zxjl Label-attended text representation m� d
zljx Text-attended label representation c � d
f enc Encoder function –
f dec Decoder function –

TLCE demb Embedding dimension Scalar
dh Hidden dimension of transformer layer Scalar
p The number of attention heads Scalar
Xemb Word embeddings m� demb

Lemb Label embeddings c � demb

Xproj Projected word embeddings m� d
Lproj Projected label embeddings c � d
Xenc Text encoding from contextual encoding layer m� d
Lenc Label encoding from contextual encoding layer c � d
Xatt Label-attended text encoding m� dh
Latt Text-attended label encoding c � dh
Xfuse Fused text encoding from co-attention layer m� d
Lfuse Fused label encoding from co-attention layer c � d
Xfin Final text encoding from final encoding layer m� d
Lfin Final label encoding from final encoding layer c � d

ALD T The total number of decoding steps Scalar
ŷ Predicted probability sequence T � c
et The embedding of the ground true label at the t-th decoding step d� 1
rt Recurrent context state at the t-th decoding step d� 1
ht Hidden state at the t-th decoding step d� 1
ct Cell state at the t-th decoding step d� 1
at Attention weights at the t-th decoding step m� 1
ŷt Predicted probability at the t-th decoding step 1� c
1½�� Indicator function –
L Objective function –
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model is able to focus on the relevant parts in the text sequence
and label sequence.

Formally, we consider a text sequence x containing m word
tokens in the document and a label sequence l containing c label
tokens in the predefined label set C. It is worth noting that the
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label sequence is converted from the label set C (see Section 4.1.3
for details) and it is identical for each sample during both training
and inference. We aim to incorporate the label information and
text information to obtain a label-attended text representation
zxjl and a text-attended label representation zljx:
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zxjl; zljx ¼ f encðx; lÞ; ð1Þ
where f enc is any mapping function to be learned. After acquiring
these two representations, we generate a sequence of probabilities
ŷ for each class with a decoder:

ŷ ¼ f decðzxjl; zljxÞ; ð2Þ
where f dec is any mapping function to be learned. In this way, our
decoder is able to leverage the mutually attended representations
to facilitate the label prediction.

In the following, we will present the architecture design of our
model. Particularly, we detail the Text-Label Co-attentive Encoder
(TLCE) in Section 3.2 and introduce the Adaptive Label Decoder
(ALD) in Section 3.3.

3.2. Text-label co-attentive encoder

In this subsection, we introduce our proposed Text-Label Co-
attentive Encoder (TLCE) in detail. The TLCE aims to jointly encode
the text sequence and the label sequence into mutually attended
text and label representations. Specifically, the TLCE consists of a
contextual encoding layer, a co-attention layer, and a final encod-
ing layer.

3.2.1. Contextual encoding layer
To encode the word tokens and label tokens into meaningful

encodings, we adopt a Bidirectional Long Short Term Memory
(BiLSTM) [39] to capture the contextual cues from the text and
the correlation (which we consider as a special case of contextual
information) among the labels.

Given an input word sequence x 2 Rm and a label sequence
l 2 Rc , we first map them into word embeddings Xemb 2 Rm�demb

and label embeddings Lemb 2 Rc�demb respectively. The word embed-
dings are initialized with the pre-trained word vectors [40,41]
while the label embeddings are randomly initialized. For computa-
tion efficiency, we apply two independent linear projection layer to
project Xemb and Lemb into the more compact embeddings with a
smaller dimension, i.e., Xproj 2 Rm�d and Lproj 2 Rc�d, respectively.
Here, d < demb.

To capture the contextual information in the text sequence and
the correlation in the label sequence, we apply a BiLSTM on the
projected word embeddings Xproj 2 Rm�d and the projected label
embeddings Lproj 2 Rc�d respectively:

Xenc ¼ BiLSTMðXprojÞ;
Lenc ¼ BiLSTMðLprojÞ;

ð3Þ

where Xenc 2 Rm�d is the text encoding and Lenc 2 Rc�d is the label
encoding. To reduce the number of parameters, we share the
weights of this BiLSTM.

3.2.2. Co-attention layer
To acquire the text-attended label representation and the label-

attended text representation, we modify the widely applied self-
attention module in the Transformer [38] into a co-attention layer.
Instead of applying the self-attention, we employ a co-attention
between the text encoding and the label encoding to attend to each
other. Intuitively, the label-attended text representation can help
the model to focus more on the relevant words for the classifica-
tion task, while the text-attended label representation is able to
emphasize the labels that match the text better.

For convenience, we first recap the scaled dot product attention
and multi-head attention in Transformer [38]. The scaled dot pro-
duct attention is defined as follows:
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AttentionðQ ;K;VÞ ¼ SoftmaxðQK
T

ffiffiffiffiffi
dh

p ÞV; ð4Þ

where Q 2 Rq�dk ;K 2 Rk�dk , and V 2 Rk�dv . And the multi-head
attention is defined as:

MultiHeadðQ ;K;VÞ ¼ Softmaxð½H1; . . . ;Hp�ÞWO;

whereHi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ;

ð5Þ

and the projecting parameters are WQ
i 2 Rdk�dp ;WK

i 2 Rdk�dp ;

WV
i 2 Rdv�dp , and WO

i 2 Rpdp�dh . We use dk ¼ dv ¼ dp and dp ¼ dh=p
is the dimension for each head, where d is the interval model
dimension and p is the number of heads. We use the ½�� to denote
the concatenate operation throughout the paper. The original
multi-head self-attention [38] only considers the text modal, i.e.,
the matrices Q ;K and V are text encoding. To mutually refine the
text and label, we convert the self-attention into a co-attention by
feeding both the text encoding Xenc and the label encoding Lenc into
the multi-head attention module:

Xatt ¼ MultiHeadXðXenc; Lenc; LencÞ;
Latt ¼ MultiHeadLðLenc;Xenc;XencÞ;

ð6Þ

where Xatt 2 Rm�dh and Latt 2 Rc�dh are the label-attended text repre-
sentation and the text-attended label representation respectively.

Similar to the Transformer [38] architecture, we also apply
residual connections and two independent Feed Forward Networks
(FFN) following Layer Normalization (LN) [42] to obtain their fused
encodings Xfuse 2 Rm�d and Lfuse 2 Rc�d:

Xfuse ¼ LNXðFFNXðXattÞ þ XencÞ;
Lfuse ¼ LNLðFFNLðLattÞ þ LencÞ:

ð7Þ

The FFN projects the input into dimension d and further propa-
gates the mutually attended information, while the residual con-
nection fuses the attended representations with their original
encodings.

3.2.3. Final encoding layer
To further leverage the contextual information of the label-

attended text encoding and the correlation of the text-attended
label encoding, we apply a final encoding layer on top of the co-
attention layer.

In the final encoding process, two independent BiLSTMs are
applied to propagate the mutually attended information in the
fused text encoding and the fused label encoding, respectively.
One BiLSTM encodes the fused text encoding Xfuse into the text final
representation Xfin:

Xfin ¼ BiLSTMXðXfuseÞ; ð8Þ
where Xfin 2 Rm�d. Note that the hidden state h 2 Rd�1 and the cell

state c 2 Rd�1 inside the BiLSTMX are preserved for the subsequent
decoding process. They are used to initialize the hidden state and
cell state in LSTM Decoder respectively (see Section 3.3.1 for
details).

Another BiLSTM encodes the fused label encoding to yield the
final representation of the label sequence Lfin 2 Rc�d:

Lfin ¼ BiLSTMLðLfuseÞ: ð9Þ
3.3. Adaptive label decoder

In this subsection, we elaborate on our Adaptive Label Decoder
(ALD) in detail. The ALD leverages both the text representation and
the label representation to generate the label(s). For each timestep,
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the decoding process of ALD is separated into two steps: 1) obtain
the hidden state, the cell state, and the recurrent context state with
an LSTM Decoder; 2) compute a probability for each class via an
adaptive classifier.

3.3.1. LSTM decoder
To cope with both the multi-class and the multi-label classifica-

tion without any modification to the model, we adopt an LSTM
Decoder to generate the label(s), which is able to further model
the correlations between labels [14].

Specifically, we adopt a standard LSTMCell with attention [43]
to implement the LSTM Decoder. During training, we first look
up the label embedding et�1 2 Rd�1 for the ground true label in
the ðt � 1Þ-th decoding step. Note that during inference, we look
up the embedding for the predicted label instead. Then, the
LSTMCell takes the label embedding et�1, the recurrent context
state rt�1 2 Rd�1, the hidden state ht�1 2 Rd�1, and the cell state
ct�1 2 Rd�1 of previous timestep as inputs. It outputs the hidden
state ht and the cell state ct for the current timestep t as follows:

ht ; ct ¼ LSTMCellð½et�1; rt�1�;ht�1; ct�1Þ: ð10Þ
Here, we initialize the h0 and c0 with h and c from the encoding

process respectively. Both the e0 and r0 are initialized with zero
vectors.

After we obtain the hidden state ht , we compute the attention
weights at 2 Rm�1 to help the decoder to focus on the text informa-
tion relevant to the timestep t:

at ¼ SoftmaxðXfinW1htÞ; ð11Þ

whereW1 2 Rd�dis a trainable matrix. Then, we obtain the recurrent
context state rt for timestep t as follows:

rt ¼ TanhðW2½XT
finat ;ht �Þ; ð12Þ

where W2 2 Rd�2dis a trainable matrix. The recurrent context state
rt will be used in the next timestep to compute the hidden state
htþ1 as in Eq. 10.

Then, the hidden state ht will be passed to the adaptive classi-
fier for subsequent procedures.

3.3.2. Adaptive classifier
To leverage the informative text-attended label representation,

we propose an adaptive classifier. Comparing with the linear pro-
jection layer used in most of the existing methods
[5,30,44,31,45], the adaptive classifier is able to attentively lever-
age the text-attended label representation to directly output a
probability for each class.

Given the hidden state ht of timestep t, the adaptive classifier
takes the final label encoding Lfin and the hidden state ht as inputs
and produce the probabilities ŷt at timestep t:

ŷt ¼ SotfmaxðLfinW3htÞ; ð13Þ

where W3 2 Rd�d is a trainable matrix and ŷt 2 R1�c is a vector that
contains the probability for each class at timestep t. In this way, we
directly incorporate the text-attended label representation to facil-
itate the classification process.

After generating the probabilities for all the T timesteps, we
compute the objective function L to optimize our model as
follows:

L ¼ �
XT

t¼1

X

i2C
1 yt ¼ i½ � logðŷtÞ; ð14Þ

where yt is the ground true label at timestep t. 1½�� is the indicator
function, where 1½A� ¼ 1 if A is true and 1½A� ¼ 0 if A is false. Note
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that Eq. 14 can be applied in both the multi-label classification
and multi-class classification task.

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
We evaluate the models on 7 multi-class and 2 multi-label

datasets. The statistics summary of these datasets is presented in
Table 2.

For multi-class classification, we follow [28] and use 7 standard
benchmark datasets with contents specified as follows. Note that
we consider the binary classification as a special case of the
multi-class classification.

� Yelp Full Review (Yelp F.): The Yelp Review dataset is obtained
from the Yelp Dataset Challenge in 2015. This task aims to pre-
dict the sentiment polarity labels, i.e., very negative, negative,
neutral, positive, and very positive.

� Yelp Polarity Review (Yelp P.): This dataset contains the same
set of the review texts in the Yelp Full Review, but only consid-
ers two sentiment polarities, i.e., negative and positive.

� Amazon Full Review (Amz. F.): The Amazon dataset is obtained
from the Stanford Network Analysis Project (SNAP) [46]. Similar
to the Yelp Review dataset, the Amazon Full Review dataset also
has five sentiment stars ranging from 1 to 5.

� Amazon Polarity Review (Amz. P.): Similar to the Yelp Polarity
Review, this dataset also considers the star 1 and 2 as negative,
and the star 4 and 5 as positive.

� AG News (AG): The AG News dataset is obtained from the Inter-
net news articles [47]. It has four categories for topic classifica-
tion: world, entertainment, sports, and business.

� DBPedia (DBP.): The DBPedia is constructed from Wikipedia
[48]. It has 14 non-overlapping ontology classes from DBpedia
2014.

� Yahoo! Answers (Yah. A.): The Yahoo! Answers dataset is con-
structed from Yahoo! Answers Comprehensive Questions and
Answers version 1.0 dataset in the Yahoo! Webscope program.

For multi-label classification, we evaluate our method on 2 pop-
ular datasets, namely AAPD [14] and Reuters-21578 [49].

� Arxiv Academic Paper Dataset (AAPD): The AAPD dataset is built
by collecting the abstract and the corresponding subjects of
55,840 papers from the computer science academic website.1

� Reuters-21578: Reuters is a dataset collected from Reuters
news articles with 90 categories.

4.1.2. Evaluation metrics
We use accuracy as the metric for multi-class classification. For

multi-label classification, we adopt the micro-averaged F1 score
[50], which comes from the class-weighted harmonic mean of pre-
cision and recall. Denote the true positive, false positive, and false
negative counts of the i-th class as TPi; FPi, and FNi respectively. The
micro-F1 score is computed as follows:

micro� F1 ¼
Pc

i¼12TPiPc
i¼12TPi þ FPi þ FNi

: ð15Þ
4.1.3. Implementation details
To convert the predefined label set into our input label

sequence, we randomly choose the order of labels (which is fixed



Table 2
Statistics summary of multi-class and multi-label classification datasets. #Training and #Test refer to the number of samples in the training set and test set respectively.

Type Dataset #Classes #Training #Test Task

Multi-class Yelp Full 5 650 k 50 k sentiment
Yelp Polarity 2 560 k 38 k sentiment
Amazon Full 5 3,000 k 650 k sentiment
Amazon Polarity 2 3,600 k 400 k sentiment
AG News 4 120 k 76 k topic
DBPedia 14 560 k 70 k ontology
Yahoo! Answers 10 1,400 k 60 k topic

Multi-label AAPD 54 53,840 1,000 topic
Reuters-21578 90 9,598 3,299 topic
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once chosen) and concatenate all the labels to obtain the label
sequence. The label sequence contains all the labels in the label
set and it is identical for every sample in the dataset. For word
embeddings in the text sequence, we concatenate the 300-
dimension Glove [40] and the 100-dimension character n-gram
embedding [41] to produce 400-dimension embeddings, i.e.,
demb ¼ 400, which are frozen during training. We initialize Out-
Of-Vocabulary (OOV) words and label embeddings from a uniform
distribution with the range ½�0:01;0:01� (also with 400 dimen-
sions). The internal model dimension d is set to 256. For the
BiLSTM, we set the output dimension to d=2 and concatenate the
outputs of two directions to obtain the final outputs. The hidden
dimension in the co-attention layer, i.e., dh is set to 150 and the
number of attention heads p is set to 3. We use a greedy search
decoding strategy for the decoder since labels are usually short
in length. Our model is trained with an Adam [51] optimizer along
with the warmup schedule as in [38]. b1; b2 and � in the Adam opti-
mizer are set to 0:9;0:98 and 10�9 respectively. The number of
steps for warmup is set to 800 and the batch size is 32. During
training, we apply gradient clipping that re-scales the gradient’s
norm within the interval ½0:0;1:0Þ to avoid unstable optimization.
For the datasets that contain less than 20 M samples, we apply a
sub-sample strategy to augment the dataset to obtain 20 M sam-
ples in total. We stop the training process if the validation metric
does not change for 5 consecutive epochs. All experiments are con-
ducted on a single Titan-XP GPU.
4.2. Quantitative results

In this part, we compare the performance of different methods
on 9 benchmarks in total. We present the results of multi-class
classification in Table 3 and the results of multi-label classification
in Table 4. Due to space constraints, we use abbreviations for the
names of the datasets that are introduced in Section 4.1 in Table 3.

Multi-class Classification. As shown in Table 3, our CNLE gener-
ally achieves higher accuracy compared with the previous baseline
methods on the 6 multi-class datasets, which validates the effec-
tiveness of our method. Label embedding methods (i.e., LEAM [9],
EXAM [10]) achieve promising performance compared with the
methods with more complex architecture, such as VDCNN [5]
and Encoder1-Encoder2 [45] (abbreviated as E1-E2 in Table 3). Dif-
ferent from them, our model uses both the text-attended label pre-
sentation and label-attended text presentation. The results show
that our model achieves considerable improvement in perfor-
mance comparing with previous state-of-the-art methods. This
agrees well with our intuition that further exploiting the informa-
tion from labels improves the text classification task more
effectively.

Multi-label Classification. We also compare our model with pre-
vious state-of-the-arts methods in multi-label classification. From
Table 4, our model outperforms the prior works, often by a large
margin. Significantly, our model surpasses previous methods by
66
2.9% on the Reuters dataset. The improvement indicates that our
model is able to better cope with multi-label classification.

4.3. Qualitative results

We visualize both the label-to-text attention and the text-to-
label attention in the co-attention layer in Fig. 2. As depicted in
the figure, the important parts for classification, such as the new
york sirloin cooked well, but it was pretty tough, have higher atten-
tion scores on both sides. It shows that our co-attention layer cap-
tures the classification-relevant parts in both the text sequence
and the label sequence, which verifies the effectiveness of the pro-
posed text-label co-attention mechanism. Note that some of the
attention heads in the multi-head attention module turn out to
be redundant and this issue has been studied in some literature
[52,53]. Thus, the corresponding attention scores on the redundant
heads are not discriminative, making them look similar. Neverthe-
less, some attention heads (as shown in Fig. 2 with colors in
orange, light blue, and blue) are discriminative enough to facilitate
the classification.

5. Further experiments

5.1. Ablation studies

To further validate the effectiveness of our CNLE, we conduct
two ablation studies on both multi-class and multi-label bench-
marks. The results are shown in Table 5 and Table 6 respectively.
In the first ablation study (CNLE w/o Label Embedding), we do
not use the label embedding (i.e., label sequence) at all. In another
word, only the text sequence is fed into the model as input, which
yields a model similar to most existing methods. In the second
ablation (CNLE w/o Text-to-label Attention), we retain the label
embedding and label-to-text attention. However, we remove the
text-to-label attention such that the label embedding is not
attended by the text. Ablation results indicate that with the text-
attended label representation, our method generally yields a con-
siderable improvement in terms of performance. This shows the
effectiveness of our text-label co-attentive architecture.

5.2. Comparison with large pre-trained models

Recently, several large pre-trained models such as BERT [21]
and XLNet [22] use large scale unsupervised corpus and obtain a
powerful language representation ability. These models indeed
achieve better performance than ours, but we argue that they are
computationally inefficient and might not be practical in some
real-life settings. In Table 7, we present the comparison between
our CNLE and two large pre-trained models in terms of perfor-
mance and the number of parameters. We clearly see that they
have more than 100 times parameters comparing with CNLE, but
only with less than 0.03% performance gain. This is a big disadvan-



Table 3
Test accuracy on 7 multi-class benchmarks. The best results are in bold.

Model Yelp P. Yelp F. Amz. P. Amz. F. AG DBP. Yah. A.

Bags-of-words [28] 92.24 57.99 90.40 54.64 88.81 96.61 68.89
LSTM [28] 94.74 58.17 93.90 59.43 86.06 98.55 70.84
VDCNN [5] 95.72 64.26 95.69 63.00 91.27 98.71 73.43
D. LSTM [31] 92.60 59.60 – – 92.10 98.70 73.70
Bi-BloSAN [19] 94.56 62.13 – – 92.45 98.77 76.28
LEAM (Linear) [9] 93.43 61.03 – – 91.75 98.32 75.22
LEAM [9] 95.31 64.09 – – 92.45 99.02 77.42
EXAM [10] – – 95.50 61.90 93.00 99.00 74.80
E1-E2 [45] 96.70 67.00 96.00 63.10 93.20 99.00 75.00
Transformer [38] 96.13 65.34 – – 93.89 98.98 –

CNLE (Ours) 97.13 68.15 96.23 64.18 94.00 99.17 75.78

Table 4
Test micro-F1 on 2 multi-label benchmarks. The best results are in bold.

Model AAPD Reuters

SVM [44] 69.1 86.1
TextCNN [27] 51.4 80.8
HAN [8] 68.0 85.2
XML-CNN [6] 68.7 86.2
SGM [14] 71.0 78.8
LSTMbase [44] 69.6 84.9
LSTMreg [44] 70.5 87.0

CNLE (Ours) 71.7 89.9

Table 6
Ablation study of CNLE on 2 multi-label benchmarks. Best results are in bold.

Model AAPD Reuters

CNLE w/o Label Embedding 71.6 88.0
CNLE w/o Text-to-label Attention 70.6 89.4
CNLE 71.7 89.9
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tage in the real-life scenarios with strict time and space
constraints.

5.3. Analysis on the weights sharing strategy

We conduct a comprehensive experiment to analyze the effect
of different weights sharing strategies for TLCE. The results are
shown in Table 8. From Table 8, whether sharing the weights or
not does not affect the performance significantly. This result
should not be surprising since both the ‘‘text” and ‘‘label” are just
Fig. 2. Visualization of the attention scores in the multi-head co-attention layer. We vis
dataset. The top three rows show the label-to-text multi-head attention scores, while th
color.

Table 5
Ablation study of CNLE on 4 multi-class benchmarks. Best results are in bold.

Model Yelp P. Yelp F.

CNLE w/o Label Embedding 96.96 68.07
CNLE w/o Text-to-label Attention 96.66 68.10
CNLE 97.13 68.15

67
tokens containing some semantic information. Moreover, this is a
piece of convincing evidence that we can model both the text
sequence and the label sequence in one modality (even within
one module). Due to the high similarity of text and labels in the
semantic space, sharing the parameters in the encoding module
does not impact the performance significantly. The experimental
results further validate that modeling co-attention between text
and label is a reasonable choice.
6. Conclusion

In this paper, we introduce a text-label co-attention mechanism
for more effective text classification. We seek to obtain the mutu-
ualize them from a sample with label Neutral in the test set of the Yelp Full Review
e three rows at the bottom show the text-to-label attention scores. Best viewed in

AG DBP.

93.74 99.15
93.93 99.17
94.00 99.17



Table 7
Comparison with large pre-trained models in terms of the test accuracy, number of parameters and the average performance gain (D). Best results are in bold.

Model Yelp P. Yelp F. Amz. P. Amz. F. DBP. Yah. A. Params. (M) D (%)

CNLE (Ours) 97.13 68.15 96.23 64.18 99.17 75.78 3 -
BERT [21] 98.11 70.68 97.37 65.83 99.36 77.62 340 0.015
XLNet [22] 98.45 72.20 97.60 67.74 99.38 - 340 0.025

Table 8
Analysis of the effect of sharing the weights in different modules of TLCE in multi-class and multi-label classification. CE, CA, and FE refer to the contextual encoding layer, co-
attention layer, and final encoding layer, respectively. The ‘‘U” indicates that the weights of this module are shared between text and label sequences. Note that the metrics used
in multi-class and multi-label classification are accuracy and micro-F1 respectively.

CE CA FE Yelp F. Amz. F. AAPD Reuters

U 68.15 64.18 71.7 89.8
U U 68.15 64.21 71.1 89.8
U U U 68.25 64.18 72.1 89.7
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ally attended representations for both the text sequence and the
label sequence. In this way, we are able to focus on the relevant
parts of the text and labels to facilitate text classification. More-
over, with the generative decoder, we are able to cope with both
multi-class classification and multi-label classification without
modifying the model. The extensive experiments on 7 multi-class
classification benchmarks and 2 multi-label benchmarks demon-
strate the superiority of our method over the considered baseline
methods. In future work, the idea of the co-attention mechanism
can be further applied to other NLP tasks, such as few-shot text
classification and machine reading comprehension.
CRediT authorship contribution statement

Minqian Liu: Conceptualization, Methodology, Software, Writ-
ing - original draft, Validation. Lizhao Liu: Conceptualization,
Methodology, Software, Writing - original draft. Junyi Cao:
Methodology, Software, Writing - original draft, Investigation.
Qing Du: Writing - review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] T. Sahni, C. Chandak, N.R. Chedeti, M. Singh, Efficient twitter sentiment
classification using subjective distant supervision, in: 2017 9th International
Conference on Communication Systems and Networks (COMSNETS), 2017, pp.
548–553.

[2] D. Zhang, W.S. Lee, Question classification using support vector machines, in:
Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in information retrieval, 2003, pp. 26–32.

[3] P.F. Brown, P.V. Desouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai, Class-based n-gram
models of natural language, Comput. Linguistics 18 (4) (1992) 467–479.

[4] H.M. Wallach, Topic modeling: beyond bag-of-words, in: Proceedings of the
23rd international conference on Machine learning, 2006, pp. 977–984.

[5] A. Conneau, H. Schwenk, L. Barrault, Y. Lecun, Very deep convolutional
networks for text classification, in: Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 1107–1116.

[6] J. Liu, W.-C. Chang, Y. Wu, Y. Yang, Deep learning for extreme multi-label text
classification, in: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2017, pp. 115–124.

[7] P. Liu, X. Qiu, X. Huang, Recurrent neural network for text classification with
multi-task learning, in: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, 2016, pp. 2873–2879.

[8] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention
networks for document classification, in: Proceedings of the 2016 conference
of the North American chapter of the association for computational linguistics:
human language technologies, 2016, pp. 1480–1489.
68
[9] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, L. Carin, Joint
embedding of words and labels for text classification, in: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2018, pp. 2321–2331.

[10] C. Du, Z. Chen, F. Feng, L. Zhu, T. Gan, L. Nie, Explicit interaction model towards
text classification, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 6359–6366..

[11] M. Seo, A. Kembhavi, A. Farhadi, H. Hajishirzi, Bidirectional attention flow for
machine comprehension, in: International Conference on Learning
Representations, 2017..

[12] C. Xiong, V. Zhong, R. Socher, Dynamic coattention networks for question
answering, in: International Conference on Learning Representations, 2017..

[13] B. McCann, N.S. Keskar, C. Xiong, R. Socher, The natural language decathlon:
Multitask learning as question answering, arXiv preprint arXiv:1806.08730..

[14] P. Yang, X. Sun, W. Li, S. Ma, W. Wu, H. Wang, Sgm: sequence generation model
for multi-label classification, in: Proceedings of the 27th International
Conference on Computational Linguistics, 2018, pp. 3915–3926.

[15] A. McCallum, K. Nigam, et al., A comparison of event models for naive bayes
text classification, in: AAAI-98 workshop on learning for text categorization,
vol. 752, Citeseer, 1998, pp. 41–48..

[16] H.-J. Kim, J.-U. Kim, Y.-G. Ra, Boosting nai ve bayes text classification using
uncertainty-based selective sampling, Neurocomputing 67 (2005) 403–410.

[17] S.R. Gunn, et al., Support vector machines for classification and regression,
1998..

[18] S. Zhou, Q. Chen, X. Wang, Active deep learning method for semi-supervised
sentiment classification, Neurocomputing 120 (2013) 536–546.

[19] T. Shen, T. Zhou, G. Long, J. Jiang, C. Zhang, Bi-directional block self-attention
for fast and memory-efficient sequence modeling, in: International Conference
on Learning Representations, 2018..

[20] G. Liu, J. Guo, Bidirectional lstm with attention mechanism and convolutional
layer for text classification, Neurocomputing 337 (2019) 325–338.

[21] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 4171–4186.

[22] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.R. Salakhutdinov, Q.V. Le, Xlnet:
Generalized autoregressive pretraining for language understanding, in:
Advances in neural information processing systems, 2019, pp. 5754–5764..

[23] J. Kim, S. Jang, E. Park, S. Choi, Text classification using capsules,
Neurocomputing 376 (2020) 214–221.

[24] X. Jing, F. Wu, Z. Li, R. Hu, D. Zhang, Multi-label dictionary learning for image
annotation, IEEE Trans. Image Process. 25 (6) (2016) 2712–2725.

[25] X. Jing, X. Zhu, F. Wu, R. Hu, X. You, Y. Wang, H. Feng, J. Yang, Super-resolution
person re-identification with semi-coupled low-rank discriminant dictionary
learning, IEEE Trans. Image Process. 26 (3) (2017) 1363–1378.

[26] X. Zhu, X. Jing, X. You, W. Zuo, S. Shan, W. Zheng, Image to video person re-
identification by learning heterogeneous dictionary pair with feature
projection matrix, IEEE Trans. Inf. Forensics Secur. 13 (3) (2018) 717–732.

[27] Y. Kim, Convolutional neural networks for sentence classification, in:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[28] X. Zhang, J. Zhao, Y. LeCun, Character-level convolutional networks for text
classification, in: Advances in neural information processing systems, 2015,
pp. 649–657..

[29] P. Wang, B. Xu, J. Xu, G. Tian, C.-L. Liu, H. Hao, Semantic expansion using word
embedding clustering and convolutional neural network for improving short
text classification, Neurocomputing 174 (2016) 806–814.

[30] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[31] D. Yogatama, C. Dyer, W. Ling, P. Blunsom, Generative and discriminative text
classification with recurrent neural networks, arXiv preprint
arXiv:1703.01898..

http://refhub.elsevier.com/S0925-2312(21)01650-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0015
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0015
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0020
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0020
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0020
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0035
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0035
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0035
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0035
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0045
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0045
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0045
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0045
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0045
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0080
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0080
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0100
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0100
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0115
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0115
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0120
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0120
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0130
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0130
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0130
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0145
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0145
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0145
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0150
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0150


M. Liu, L. Liu, J. Cao et al. Neurocomputing 471 (2022) 61–69
[32] H. Zhang, L. Xiao, W. Chen, Y. Wang, Y. Jin, Multi-task label embedding for text
classification, in: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2018, pp. 4545–4553.

[33] J. Lu, J. Yang, D. Batra, D. Parikh, Hierarchical question-image co-attention for
visual question answering, in: Advances in neural information processing
systems, 2016, pp. 289–297..

[34] Z. Yu, J. Yu, J. Fan, D. Tao, Multi-modal factorized bilinear pooling with co-
attention learning for visual question answering, in: Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1821–1830.

[35] J. Lu, D. Batra, D. Parikh, S. Lee, Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks, Adv. Neural Inform. Process.
Syst. (2019) 13–23.

[36] Y. Li, T. Liu, J. Hu, J. Jiang, Topical co-attention networks for hashtag
recommendation on microblogs, Neurocomputing 331 (2019) 356–365.

[37] L. Zhang, Z. Guan, A. Hauptmann, The co-attention model for tiny activity
analysis, Neurocomputing 105 (2013) 51–60.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, in: Advances in neural information
processing systems, 2017, pp. 5998–6008..

[39] A. Graves, J. Schmidhuber, Framewise phoneme classification with
bidirectional lstm and other neural network architectures, Neural Networks
18 (5–6) (2005) 602–610.

[40] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word
representation, in: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[41] K. Hashimoto, C. Xiong, Y. Tsuruoka, R. Socher, A joint many-task model:
growing a neural network for multiple nlp tasks, in: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP),
2017, pp. 1923–1933.

[42] J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, arXiv preprint
arXiv:1607.06450..

[43] T. Sahni, C. Chandak, N.R. Chedeti, M. Singh, Efficient twitter sentiment
classification using subjective distant supervision, in: 2017 9th International
Conference on Communication Systems and Networks (COMSNETS), 2017, pp.
548–553.

[44] A. Adhikari, A. Ram, R. Tang, J. Lin, Rethinking complex neural network
architectures for document classification, in: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 4046–4051.

[45] G. Niu, H. Xu, B. He, X. Xiao, H. Wu, G. Sheng, Enhancing local feature
extraction with global representation for neural text classification, in:
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019, pp. 496–506.

[46] J. McAuley, J. Leskovec, Hidden factors and hidden topics: understanding
rating dimensions with review text, in: Proceedings of the 7th ACM conference
on Recommender systems, 2013, pp. 165–172.

[47] G.M. Del Corso, A. Gulli, F. Romani, Ranking a stream of news, in: Proceedings
of the 14th international conference on World Wide Web, 2005, pp. 97–106.

[48] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S.
Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al., Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia, Semantic Web 6 (2)
(2015) 167–195.

[49] C. Apté, F. Damerau, S.M. Weiss, Automated learning of decision rules for text
categorization, ACM Trans. Inform. Syst. (TOIS) 12 (3) (1994) 233–251.

[50] C.D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval,
Cambridge University Press, 2008.

[51] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations, 2015..

[52] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, I. Titov, Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned, in:
Proceedings of the 57th Conference of the Association for Computational
Linguistics (Volume 1: Long Papers), 2019, pp. 5797–5808.

[53] M. Behnke, K. Heafield, Losing heads in the lottery: pruning transformer
attention in neural machine translation, in: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP),
2020, pp. 2664–2674.
69
Minqian Liu received the B.E. degree from the School of
Computer Science and Engineering, South China
University of Technology. He is currently studying for
the Ph.D. degree in computer science and application at
the Department of Computer Science, Virginia Tech. His
main research interests include natural language pro-
cessing, information retrieval, computer vision, and
deep learning.
Lizhao Liu received the B.E. degree from the School of
Software Engineering, South China University of Tech-
nology, where he is currently studying for the master’s
degree in electrical and information engineering. His
main research interests cover machine learning, visual
recognition and deep learning.
Junyi Cao received the B.E. degree at the School of
Software Engineering, South China University of Tech-
nology. He is currently studying for the master’s degree
in computer science and technology at the Department
of Computer Science and Engineering, Shanghai Jiao
Tong University. His main research interests cover
neural networks, visual recognition and deep learning.
Qing Du received the B.S. degree in computer science
and technology, the master’s degree in computer
application, and the Ph.D. degree in computer applica-
tion from the South China University of Technology
respectively, where she is currently an Associate Pro-
fessor with the School of Software Engineering. Her
research interests include information retrieval, rec-
ommendation systems, natural language processing,
and deep learning.

http://refhub.elsevier.com/S0925-2312(21)01650-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0175
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0175
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0175
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0180
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0180
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0215
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0215
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0215
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0215
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0215
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0220
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0230
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0230
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0230
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0230
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0235
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0235
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0235
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0245
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0245
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0250
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0250
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0250
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0260
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0260
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0260
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0260
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0260
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0265
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0265
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0265
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0265
http://refhub.elsevier.com/S0925-2312(21)01650-7/h0265

	Co-attention network with label embedding for text classification
	1 Introduction
	2 Related work
	3 Co-attention network with label embedding
	3.1 General scheme
	3.2 Text-label co-attentive encoder
	3.2.1 Contextual encoding layer
	3.2.2 Co-attention layer
	3.2.3 Final encoding layer

	3.3 Adaptive label decoder
	3.3.1 LSTM decoder
	3.3.2 Adaptive classifier


	4 Experiments
	4.1 Experimental settings
	4.1.1 Datasets
	4.1.2 Evaluation metrics
	4.1.3 Implementation details

	4.2 Quantitative results
	4.3 Qualitative results

	5 Further experiments
	5.1 Ablation studies
	5.2 Comparison with large pre-trained models
	5.3 Analysis on the weights sharing strategy

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


